
This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-119489
PREPRINT

This paper was prepared for submittal to the
Goddard Conference on Mass Storage & Technologies

College Park, MD
March 28-30, 1995

January 1995

Danny Teaff
Dick Watson
Bob Coyne

The Architecture of the
High Performance Storage System (HPSS)

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

The Architecture of the High Performance Storage System
(HPSS)

Danny Teaff
IBM Federal

3700 Bay Area Blvd.
Houston, TX 77058
teaff@vnet.ibm.com

(713) 282-8137
Fax (713) 282-8074

Dick Watson
Lawrence Livermore National Laboratory

PO Box 808, L-560
Livermore, CA 94550

dwatson@llnl.gov
(510) 422-9216

Fax (510) 423-7997

Bob Coyne
IBM Federal

3700 Bay Area Blvd., 5th Floor
Houston, TX 77058
coyne@vnet.ibm.com

(713) 282-8039
Fax (713) 282-8074

Abstract

The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage
system performance and functionality relative to application requirements and the
capabilities of other system components. The High Performance Storage System (HPSS) is
a scalable, next-generation storage system that will meet the functionality and performance
requirements of large-scale scientific and commercial computing environments.

Our goal is to improve the performance and capacity of storage systems by two orders of
magnitude or more over what is available in the general or mass marketplace today. We are
also providing corresponding improvements in architecture and functionality. This paper
describes the architecture and functionality of HPSS.

Introduction

The rapid improvement in computational science, processing capability, main memory
sizes, data collection devices, multimedia capabilities, and integration of enterprise data are
producing very large datasets. These datasets range from tens to hundreds of gigabytes up
to terabytes. In the near future, storage systems must manage total capacities, both
distributed and at single sites, scalable into the petabyte range. We expect these large
datasets and capacities to be common in high-performance and large-scale national
information infrastructure scientific and commercial environments. The result of this rapid

2

growth of data is a serious imbalance in I/O and storage system performance and
functionality relative to application requirements and the capabilities of other system
components.

To deal with these issues, the performance and capacity of large-scale storage systems must
be improved by two orders of magnitude or more over what is available in the general or
mass marketplace today, with corresponding improvements in architecture and
functionality. The goal of the HPSS collaboration is to provide such improvements. HPSS
is the major development project within the National Storage Laboratory (NSL). The NSL
was established to investigate, demonstrate, and commercialize new mass storage system
architecture to meet the needs above [5,7,21]. The NSL and closely related projects involve
more than 20 participating organization from industry, Department of Energy (DOE) and
other federal laboratories, universities, and National Science Foundation (NSF)
supercomputer centers. The current HPSS development team consists of IBM U.S.
Federal, four DOE laboratories (Lawrence Livermore, Los Alamos, Oak Ridge, and
Sandia), Cornell University, and NASA Langley and Lewis Research Centers. Ampex,
IBM, Maximum Strategy Inc., Network Systems Corp., PsiTech, Sony Precision
Graphics, Storage Technology, and Zitel have supplied hardware in support of HPSS
development and demonstration. Cray Research, Intel, IBM, and Meiko are cooperating in
the development of high-performance access for supercomputers and MPP clients.

The HPSS commercialization plan includes availability and support by IBM as a high-end
Service offering through IBM U.S. Federal. HPSS source code can also be licensed and
marketed by any US. company.

Architectural Overview

The HPSS architecture is based on the IEEE Mass Storage Reference Model: version 5
[6,9] and is network-centered, including a high speed network for data transfer and a
separate network for control (Figure 1) [4,7,13,16]. The control network uses the Open
Software Foundation's (OSF) Distributed Computing Environment DCE Remote
Procedure Call technology [17]. In actual implementation, the control and data transfer
networks may be physically separate or shared. An important feature of HPSS is its
support for both parallel and sequential input/output (I/O) and standard interfaces for
communication between processors (parallel or otherwise) and storage devices. In typical
use, clients direct a request for data to an HPSS server. The HPSS server directs the
network-attached storage devices or servers to transfer data directly, sequentially or in
parallel to the client node(s) through the high speed data transfer network. TCP/IP sockets
and IPI-3 over High Performance Parallel Interface (HIPPI) are being utilized today; Fibre
Channel Standard (FCS) with IPI-3 or SCSI, or Asynchronous Transfer Mode (ATM) will
also be supported in the future [3,20,22]. Through its parallel storage support by data
striping HPSS will continue to scale upward as additional storage devices and controllers
are added to a site installation.

3

Throughput Scalable to
the GB/s Region

HIPPI/
FCS/ATM
Network

Workstation Cluster
or Parallel SystemsHPSS

Server(s)

Sequential
Systems

Local Devices

Visualization
- Vis. Engine

- Frame Buffer

Control

Network
Attached
Memories

Network
Attached
Disk(s)

Network
Attached
Tape(s)

Disk
Server(s)

Tape
Server(s)

Unix W/S

Unix W/S

Control

- NFS
- FTP
- AFS/DB
- DMIG

E-net

Secondary
Server(s)

WAN
FDDI

Figure 1 - Example of the type of configuration HPSS is designed to support

The key objectives of HPSS are now described.

Scalability

A major driver for HPSS is to develop a scalable, distributed, high performance storage
management system. HPSS is designed to scale in several dimensions.

The HPSS I/O architecture is designed to provide I/O performance scaling by supporting
parallel I/O through software striping [1]. The system will support application data
transfers from megabytes to gigabytes per second with total system throughput of many

4

gigabytes per second. Data object number and size must scale to support billions of data
objects, each potentially terabytes or larger in size, for total storage capacities in petabytes.
This is accomplished through 64-bit metadata fields and scalable organization of system
metadata. The system also is required to scale geographically to support distributed systems
with hierarchies of hierarchical storage systems. Multiple storage systems located in
different areas must integrate into a single logical system accessible by personal computers,
workstations, and supercomputers. These requirements are accomplished using a
client/server architecture, the use of OSF's DCE as its distributed infrastructure, support
for distributed file system interfaces and multiple servers. HPSS also supports a scalable
storage object name service capable of managing millions of directories and the ability to
support hundreds to thousands of simultaneous clients. The latter is achieved through the
ability to multitask, multiprocess and replicate the HPSS servers.

Modularity and APIs

The HPSS architecture is highly modular. Each replicable software component is
responsible for a set of storage objects, and acts as a service provider for those objects. The
IEEE Reference Model, on which the HPSS design is based, provides the modular layered
functionality (see Figure 2) [6,9]. The HPSS software components are loosely coupled,
with open application program interfaces (APIs) defined at each component level. Most
users will access HPSS at its high level interfaces–currently client API, FTP (both parallel
and sequential), NFS, Parallel File System (PFS), with AFS/DFS, Unix Virtual File
System (VFS), and Data Management Interface Group (DMIG) interfaces in the future)
[11,15,18,19]. However, APIs are available to the underlying software components for
applications, such as large scale data management, digital library or video-on-demand
requiring high performance or special services. This layered architecture affords the
following advantages:

• Replacement of selected software components–As new and better commercial
software and hardware components became available, an installation can add or
replace existing components. For example, an installation might add or replace
Physical Volume Repositories, Movers or the HPSS Physical Volume Library with
other commercially available products.

• Support of applications direct access to lower level services–The layered
architecture is designed to accommodate efficient integration of different
applications such as digital library, object store, multimedia, and data management
systems. Its modularity will enable HPSS to be embedded transparently into the
large distributed information management systems that will form the information
services in the emerging national information infrastructure. Support for different
name spaces or data organizations is enabled through introduction of new Name
Servers and data management applications.

Portability and Standards

Another important design goal is portability to many vendor's platforms to enable OEM and
multivendor support of HPSS. HPSS has been designed to run under Unix requiring no
kernel modifications, and to use standards based protocols, interfaces, and services where
applicable. HPSS is written in ANSI C, and uses POSIX functions to enhance software

5

portability. Use of existing commercial products for many of the infrastructure services
supported on multiple-vendor platforms enables portability, while also providing market
proven dependability. Open Software Foundation (OSF) Distributed Computing
Environment (DCE), Transarc's Encina transaction manager [8], Kinesix SAMMI and
X-windows are being used by HPSS because of their support across multiple vendor
platforms, in addition to the rich set of functionality provided. The HPSS component APIs
have been turned over to the IEEE Storage System Standards Working Group as a basis for
its standards activities.

Reliability and Recovery

Reliable and recoverable storage of data is mandatory for any storage system. HPSS
supports several mechanisms to facilitate this goal. The client-server interactions between
HPSS software components have been designed to be based on atomic transactions in
order to maintain system state consistency [14]. Within the scope of a given request, a
transaction may be established so that an abort (or commit) in one component will cause the
other participating components to abort (or commit). The HPSS Metadata Manager is fully
integrated with its Transaction Manager. Following an abort, the non-volatile file and name
space metadata changes within the scope of the transactions will automatically be rolled
back. For recovery purposes, mirroring of the storage object and name space metadata is
supported. The HPSS architecture will also support data mirroring if desired in a future
release.

Support is also provided to recover from failed devices and bad media. An administrator
interface is provided to place a device off line. Once the device has been repaired, it may
then be placed back on line. For bad media, an application interface is provided to move
storage segments from a virtual volume to a new virtual volume.

The HPSS software components execute in a distributed manner. Should a processor fail,
any of the HPSS software components may be moved to another platform. Component
services are registered with the DCE Cell Directory Service (CDS) so that components may
locate the services. Each component has also been designed to perform reconnect logic
when a connection to a peer component fails. Connection context is maintained by selected
components. When a connection context is established, a keep-alive activity is started to
detect broken connections. A server may use the context information associated with a
broken connection to perform any necessary clean up.

Security and Privacy

HPSS uses DCE and POSIX security and privacy mechanisms for authentication, access
control lists, permissions and security labels. Security policy is handled by a separate
policy module. Audit trails are also supported. Further, HPSS design and implementation
use a rigorous software engineering methodology which support its reliability and
maintainability.

Storage System Management

HPSS has a rich set of storage system management services for operators and system
administrators based on managed object definitions. The application programming interface
supports monitoring, reporting and controlling operations (see Appendix A).

6

Software Components

The HPSS software components are shown Figure 2. The shaded boxes are defined in the
IEEE Mass Storage Reference Model: version 5 [9].

(all components)

Client(s)

Other Modules

Communications
Security

Transaction Manager
Metadata Manager

Logging
Infrastructure Services

64-bit Math
Libraries

M
a
n
a
g
e
m
e
n
t

Common Infrastructure

Name
Server(s)

Storage
Server(s)

Physical
Volume

Repository(s)

HPSS Software Architecture

Installation
NSL UniTree Migration

Mover(s)Mover(s)

Migration/
Purge

Repack

Black components
are defined in the
IEEE Mass Storage
Reference Model.

Physical
Volume

Library(s)

• Client API
• PFS
• VFS I/F*

Location
Server(s)

Storage
System

Management

Storage
Server(s)

Physical
Volume

Library(s)

Physical
Volume

Repository(s)

Applications
Data Management
System Daemons:
• FTP
• NFS
• DFS/AFS*
• DMIG*

* indicates future
 interfaces

Bitfile
Server(s)

Figure 2 - Software Model Diagram

7

This section outlines the function of each component.

Infrastructure

HPSS design is based upon a well-formed industry standard infrastructure. The key
infrastructure components are now outlined.

Distributed Computing Environment

HPSS uses OSF's DCE as the base infrastructure for its distributed architecture [17]. This
standards-based framework will enable the creation of distributed storage systems for a
national information infrastructure capable of handling gigabyte-terabyte-class files at
gigabyte per second data transfer rates.

Operating System and Transport Services

DCE Threads

DCE Remote Procedure Call

DCE
Distributed

Time Service

DCE
Directory
Service

HPSS

D
C
E

S
e
c
u
r
i
t
y

M
a
n
a
g
e
m
e
n
t

Figure 3 - HPSS DCE Architecture Infrastructure

DCE was selected because of its wide adoption among vendors and its near industry-
standard status. HPSS uses the DCE Remote Procedure Call (RPC) mechanism for control
messages and DCE Threads for multitasking. The DCE threads package is vital for HPSS
to serve large numbers of concurrent users and to enable multiprocessing of its servers.
HPSS also uses the DCE Security, Cell Directory, and Time services. A library of DCE
convenience functions was developed for use in HPSS.

Transaction Management

Requests to HPSS to perform actions such as creating bitfiles or accessing file data results
in client/server interactions between software components. Transaction integrity is required
to guarantee consistency of server state and metadata in case a particular component should
fail. As a result, a transaction manager was required by HPSS. Encina, from Transarc, was

8

selected by the HPSS project as its transaction manager [8]. This selection was based on
functionality, its use of DCE, and multi-platform vendor support.

9

Encina provides begin-commit-abort semantics, distributed two-phase commit, and nested
transactions. In addition, Transaction RPCs (TRPCs), which extend DCE RPCs with
transaction semantics, are provided. For recovery purposes, Encina uses a write-ahead log
for storing transaction outcomes and updates to recoverable metadata. Mirroring of data is
also provided.

OSF DCE

Encina Toolkit Executive

Encina Toolkit Server Core

infunction();
transaction {
...

}
onCommit

...
onAbort
...

code structure

Figure 4 - Encina Components

Metadata Management

Each HPSS software component has system metadata associated with the objects it
manages. Each server with non-volatile metadata requires the ability to reliably store its
metadata. It is also required that metadata management performance be scalable as the
number of object instances grow. In addition, access to metadata by primary and secondary
keys is required. The Structured File Server (SFS), an Encina optional product, was
selected by the HPSS project as its metadata manager. SFS provides B-tree clustered file
records, record and field level access, primary and secondary keys, and automatic byte
ordering between machines. SFS is also fully integrated with the Encina transaction
manager. As a result, SFS provides transaction consistency and data recovery from
transaction aborts. For reliability purposes, HPSS metadata stored in SFS is mirrored. A
library of metadata manager convenience functions for retrieving, adding, updating, and
deleting metadata for each of the HPSS components was developed.

OSF DCE

Encina Toolkit Executive

Encina Toolkit Server Core

Encina SFS

Figure 5 - Structured File Server (SFS)

Security

The security components of HPSS provide authentication, authorization, enforcement, and
audit capabilities for the HPSS components. Authentication is responsible for guaranteeing
that a principal is the entity that is claimed, and that information received from an entity is
from that entity. Authorization is responsible for enabling an authenticated entity access to
an allowed set of resources and objects. Authorization enables end user access to HPSS

10

directories and bitfiles. Enforcement is responsible for guaranteeing that operations are
restricted to the authorized set of operations. Enforcement applies to end user access to
bitfiles. Audit is responsible for generating a log of security relevant activity. HPSS
security libraries utilize DCE and DCE security. The authentication service, which is part of
DCE, is based on Kerberos v5. The following figure depicts how HPSS security fits with
DCE and Kerberos.

H
P
S
S
C
o
m
p
o

n
e
n

t

t

s

l
i
b
g
s
s

l
i
b
h
s
e
c

D
C
E

S
e
c
u
r
i
t
y

D
C
E

R
P
C

D
C
E

R
u
n

i
m
e

O
S

Registry Service

Authentication Service

Privilege Service

RPC

Security ServerHPSS Node

Supplied by DCE Kerberos Authentication Service

Figure 6 - HPSS Security

Communication

The control path communications between HPSS components is through DCE RPCs or
Encina transaction RPCs. For data path communication, the HPSS Mover(s) currently
utilize either Sockets or IPI-3 (over HIPPI) libraries. Future support is planned for IPI-3
and SCSI over Fibre Channel Standard and TCP/IP over ATM. A special parallel data
transfer library has been developed. This library allows data to be transferred across many
parallel data connections. The library transfers data headers that identify the data that
follows. This allows data to be sent and arrive in any order on the parallel paths.

Logging

The HPSS logger is used to record alarms, events, requests, security audit records,
accounting records, and trace information from the HPSS components. A central log is
maintained which contains records from all HPSS components. A local log of activity from
components on each HPSS node is also supported. When the central log fills, it will switch
to a secondary log file. A configuration option allows the filled log to be automatically
archived to HPSS. A delog function is provided to extract and format log records. Delog
options support filtering by time interval, record type, server, and user.

11

64 Bit Arithmetic Libraries

HPSS supports file sizes up to 2**64 bytes. Many vendor platforms support only 32 bit
integer arithmetic. In order to support large file sizes and large numbers of objects on 32 bit
platforms, a library of 64 bit arithmetic functions has been developed. The functions
support both big endian and little endian I/O architectures.

Interfaces

HPSS supports several high-level interfaces: currently Client API, FTP (both standard and
parallel), and NFS, with DFS/AFS, DMIG, and VFS planned for future releases.

Client API

The HPSS Client file server API mirrors the POSIX file system interface specification
where possible. The Client API also supports extensions to allow the programmer to take
advantage of the specific features provided by HPSS (e.g., class-of-service, storage/access
hints passed at file creation and support for parallel data transfers).

FTP (standard and parallel)

HPSS provides a standard FTP server interface to transfer files from HPSS to a local file
system. Parallel FTP, an extension and superset of standard FTP, has been implemented to
provide high performance data transfers to client systems. The standard FTP protocol
supports third-party data transfer through separation of the data transfer and control paths,
but it does not offer parallel data paths [11]. HPSS modified and augmented the standard
client FTP file retrieval and storage functions to offer parallel data paths for HPSS data
transfers. This approach provides high performance FTP transfers to the client while still
supporting the FTP command set. Additional commands have been added to support
parallel transfer. This work will be submitted to the Internet Engineering Task Force for
standardization.

NFS

The NFS V2 Server interface for HPSS provides transparent access to HPSS name space
objects and bitfile data for client systems from both the native HPSS and the Network File
System V2 service. The NFS V2 Server translates standard NFS calls into HPSS control
calls and provides data transfers for NFS read and write requests. The NFS V2 Server
handles optimization of data movement requests by the caching of data and control
information. If the server machine crashes, the NFS V2 Server is in charge of recovery of
all cached data at the time of the crash. The NFS V2 Server will also recover when HPSS
crashes. Before NFS clients can request NFS services, they must mount an exported
HPSS directory by calling the Mount daemon mount API. Support for NFS V3 is planned
for a future release.

12

Parallel File System

HPSS provides the capability to act as an external hierarchical file system to vendor Parallel
File Systems (PFS). The first implementation supports the IBM SPx PIOFS. Early
deployment is also planned for Intel Paragon and Meiko PFS integration with HPSS.

Name Server (NS)

The Name Server maps a file name to an HPSS object. The Name Server provides a
POSIX view of the name space which is a hierarchical structure consisting of directories,
files, and links. File names are human readable ASCII strings. Namable objects are any
object identified by HPSS Storage Object IDs. The commonly named objects are bitfiles,
directories, or links. In addition to mapping names to unique object identifiers, the Name
Server provides access verification to objects. POSIX Access Control Lists (ACLs) are
supported for the name space objects. A key requirement of the Name Server is to be able
to scale to millions of directories and greater than a billion name space entries.

Bitfile Server (BFS)

The Bitfile Server provides the POSIX file abstraction to its clients. A logical bitfile is an
uninterpreted bit string. HPSS supports bitfile sizes up to 2**64 bytes. A bitfile is
identified by a Bitfile Server generated name called a bitfile-id. Mapping of a human
readable name to the bitfile id is provided by a Name Server external to the Bitfile Server.
Clients may reference portions of a bitfile by specifying the bitfile-id and a starting address
and length. The writes and reads to a bitfile are random and the writes may leave holes
where no data has been written. The Bitfile Server supports both sequential and parallel
read and write of data to bitfiles. In conjunction with Storage Servers, the Bitfile Server
maps logical portions of bitfiles onto physical storage devices.

Storage Server (SS)

The Storage Server provides a hierarchy of storage objects: logical storage segments,
virtual volumes and physical volumes. All three layers of the Storage Server can be
accessed by appropriately privileged clients. The server translates references to storage
segments into references to virtual volume and finally into physical volume references. It
also schedules the mounting and dismounting of removable media through the Physical
Volume Library. The Storage Server in conjunction with the Mover have the main
responsibility for orchestration of HPSS's parallel I/O operations.

The storage segment service is the conventional method for obtaining and accessing HPSS
storage resources. The Storage Server maps an abstract storage space, the storage segment,
onto a virtual volume, resolving segment addresses as required. The client is presented
with a storage segment address space, with addresses from 0 to N-1, where N is the byte
length of the segment. Segments can be opened, created, read, written, closed and deleted.
Characteristics and information about segments can be retrieved and changed.

The virtual volume service is the method provided by the Storage Server to group physical
storage volumes. The virtual volume service supports striped volumes today and mirrored
volume in a future release. Thus, a virtual volume can span multiple physical volumes. The
Storage Server maps the virtual volume address space onto the component physical

13

volumes in a fashion appropriate to the grouping. The client is presented with a virtual
volume that can be addressed from 0 to N-1, where N is the byte length of the virtual
volume. Virtual volumes can be mounted, created, read, written, unmounted and deleted.
Characteristics of the volume can be retrieved and in some cases, changed.

The physical volume service is the method provided by the storage server to access the
physical storage volumes in HPSS. Physical volumes can be mounted, created, read,
written, unmounted and deleted. Characteristics of the volume can be retrieved and in some
cases, changed.

Repack runs as a separate process. It provides defragmentation of physical volumes.
Repack utilizes a Storage Server provided function which moves storage segments to a
different virtual volume.

Mover (Mvr)

The Mover is responsible for transferring data from a source device(s) to a sink device(s).
A device can be a standard I/O device with geometry (e.g., a tape or disk), or a device
without geometry (e.g., network, memory). The Mover also performs a set of device
control operations. Movers perform the control and transfer of both sequential and parallel
data transfers.

The Mover consists of several major parts: Mover parent task, Mover listen task/request
processing task, Data Movement, Device control, and System Management.

The Mover parent task performs Mover initialization functions, and spawns processes to
handle the Mover's DCE communication, data transfer connections, as well as the Mover's
functional interface. The Mover listen task listens on a well-known TCP port for incoming
connections to the Mover, spawns request processing tasks, and monitors completion of
those tasks. The request processing task performs initialization and return functions
common to all Mover requests. Data movement supports client requests to transfer data to
or from HPSS. Device control supports querying the current device read/write position,
changing the current device read/write position, loading a physical volume into a drive,
unloading a physical volume from a drive, flushing data to the media, writing a tape mark,
loading a message to a device's display area, reading a media label, writing a media label,
and zeroing a portion of disk. System management supports querying and altering device
characteristics and overall Mover state.

Physical Volume Library (PVL)

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and
dismount sets of physical volumes. Clients can also query the status and characteristics of
physical volumes. The PVL maintains a mapping of physical volume to cartridge and a
mapping of cartridge to PVR. The PVL also controls all allocation of drives. When the
PVL accepts client requests for volume mounts, the PVL allocates resources to satisfy the
request. When all resources are available, the PVL issues commands to the PVR(s) to
mount cartridges in drives. The client is notified when the mount has completed.

The Physical Volume Library consists of two major parts: Volume mount service and
Storage system management service.

14

The volume mount service is provided to clients such as a Storage Server. Multiple
physical volumes belonging to a virtual volume may be specified as part of a single request.
All of the volumes will be mounted before the request is satisfied. All volume mount
requests from all clients are handled by the PVL. This allows the PVL to prevent multiple
clients from deadlocking when trying to mount intersecting sets of volumes. The standard
mount interface is asynchronous. A notification is provided to the client when the entire set
of volumes has been mounted. A synchronous mount interface is also provided. The
synchronous interface can only be used to mount a single volume, not sets of volumes. The
synchronous interface might be used by a non-HPSS process to mount cartridges which
are in a tape library, but not part of the HPSS system.

The storage system management service is provided to allow a management client control
over HPSS tape repositories. Interfaces are provided to import, export, and move volumes.
When volumes are imported into HPSS, the PVL is responsible for writing a label to the
volume. This label can be used to confirm the identity of the volume every time it is
mounted. Management interfaces are also provided to query and set the status of all
hardware managed by the PVL (volumes, drives, and repositories).

Physical Volume Repository (PVR)

The PVR manages all HPSS supported robotics devices and their media such as cartridges.
Clients can ask the PVR to mount and dismount cartridges. Every cartridge in HPSS must
be managed by exactly one PVR. Clients can also query the status and characteristics of
cartridges.

The Physical Volume Repository consists of these major parts: Generic PVR service, and
support for devices such as Ampex, STK, and 3494/3495 robot services, as well as an
operator mounted device service.

The generic PVR service provides a common set of APIs to the client regardless of the type
of robotic device being managed. Functions to mount, dismount, inject and eject cartridges
are provided. Additional functions to query and set cartridge metadata are provided. The
mount function is asynchronous. The PVR calls a well-known API in the client when the
mount has completed. For certain devices, like operator mounted repositories, the PVR will
not know when the mount has completed. In this case it is up to the client to determine
when the mount has completed. The client may poll the devices or use some other method.
When the client determines a mount has completed, the client should notify the PVR using
one of the PVR's APIs. All other PVR functions are synchronous. The generic PVR
maintains metadata for each cartridge managed by the PVR. The generic PVR interface calls
robotics vendor supplied code to manage specific robotic devices.

The operator mounted device service manages a set of cartridges that are not under the
control of a robotics device. These cartridges are mounted to a set of drives by operators.
The Storage System Manager is used to inform the operators when mount operations are
required.

Storage System Management (SSM)

The HPSS SSM architecture is based on the ISO managed object architecture [10,12]. The
Storage System Manager (SSM) monitors and controls the available resources of the HPSS
storage system in ways that conform to the particular management policies of a given site.

15

Monitoring capabilities include the ability to query the values of important management
attributes of storage system resources as well as an ability to receive notifications of alarms
and other significant system events. Controlling capabilities include the ability to set the
values of management attributes of storage system resources and storage system policy
parameters. Additionally, SSM can request that specific operations be performed on
resources within the storage system, such as adding and deleting logical or physical
resources. The operations performed by SSM are usually accomplished through standard
HPSS server APIs.

SSM management roles cover a wide spectrum, including configuration aspects of
installation, creating new volumes, initialization, operations, and termination tasks. SSM
can provide management capabilities to a range of clients, including site administrators,
systems administrators, operations personnel, complex graphical user interface (GUI)
management environments, and independent management applications responsible for tasks
such as purges, migration, and reclamation. Some of the functional areas of SSM include
fault management, configuration management, security management, accounting
management, and performance management.

SSM consists of these major parts: SSM Graphical User Interface (SAMMI GUI
Displays), SAMMI Data Server, and System Manager.

The SSM Graphical User Interface allows operators, administrators, and users to
interactively monitor and control the HPSS storage system. Kinesix's SAMMI product is
used to provide the HPSS GUI services. SAMMI is built on X-windows and OSF's Motif.
It provides mechanisms to simplify screen design and data management services for screen
fields. Standard Motif widgets such as menus, scrollbar lists, and buttons are used. In
addition SAMMI specific widgets such as dials, gauges, and bar charts are used for
informational and statistical data.

The SAMMI Data Server is a client to the System Manager and a server to the SAMMI
Runtime Display Manager. The SAMMI Data Server is the means by which data is acquired
and fed to the SAMMI Displays.

The Storage System Manager is a client to the HPSS servers and a server to the SAMMI
Data Server and other external clients wishing to perform management specific operations.
It interfaces to the managed objects defined by the HPSS servers.

Storage
System

Management

(all components)

Daemons:
- FTP

 - NFS
- *DFS/AFS
- PFS (Vesta)

 Client(s)

- Client API
- *VFS I/F

Applications

SAMMI Displays

Sammi Runtime
Environment

Sammi API
Data Server

System Manager

HPSS Server Components

Encina SFS

SSM Layers

Sun RPC

DCE RPC

DCE RPC

DCE RPC

DCE RPC External
Clients

Figure 7 - Storage System Management

16

Migration - Purge

The Migration-Purge server provides hierarchical storage management for HPSS through
migration and caching of data between devices. There are two types of migration and
caching: disk migration and caching and tape migration and caching. Multiple storage
hierarchies are supported by HPSS [2]. Data is cached to the highest level (fastest) device
in a given hierarchy when accessed and migrated when inactive and space is required.

The main purpose of disk migration is to free up the disk storage. This type of migration
contains two functions; migration and purge. Migration selects the qualified bitfiles and
copies these bitfiles to the next storage level defined in the hierarchy. Purge later frees the
original bitfiles from the disk storage.

The main purpose of tape migration is to free up tape volumes, and not just migrate bitfiles.
The active bitfiles in the target virtual volumes are moved laterally to the free tape volumes
in the same storage level. The inactive bitfiles in the target virtual volumes are migrated to
the free tape volumes in the next storage level.

The HPSS component client APIs provide the vehicle for the Storage System Manger to
request the server to start migration and purge whenever it is necessary. The migration-
purge server is set up to run migration periodically with the time interval specified in the
migration policy. In addition, the server will start the migration and purge to run
automatically if the free space of a storage class is below the percentage specified in the
migration-purge policy.

Other

Installation

Installation software is provided for system administrators to install/update HPSS, and
perform the initial configuration of HPSS following installation. The full HPSS system is
first installed to an installation node. Selected HPSS software components may then be
installed (using the remote installation feature) from the installation node to the other nodes
where HPSS components will be executed.

NSL-UniTree Migration

HPSS, through its support of parallel storage, provides significant improvements in I/O
rates and storage capacity over existing storage systems software. In transitioning from
existing systems, a migration path is required. The migration path should be transparent to
end users of the storage system. The capability to migrate from NSL UniTree to HPSS is
provided. The migration software handles both file metadata and actual data. Utilities
convert the file metadata (e.g., storage maps, virtual volume data, physical volume data),
and name space metadata from UniTree format to HPSS format. Actual data is not moved.
The HPSS Mover software contains additional read logic to recognize NSL UniTree data
formats when an NSL UniTree file is accessed. Utilities to support migration from other
legacy storage systems will also be provided as required.

Accounting

17

HPSS provides interfaces to collect accounting information (initially storage space
utilization). These interfaces may be used by site specific programs to charge for data
storage. SSM provides user interfaces to run the accounting collection utility, change
account numbers and change the account code assigned to storage objects.

Summary and Status

We have described the key objectives, features and components of the HPSS architecture.
At the time this paper is being written, December 1994, HPSS Release 1 (R1) is in
integration testing and planning for its early deployment at several sites has begun. R1
contains all the basic HPSS components and services and supports parallel tape. It is
targeted at MPP environments with existing parallel disk services. Much of the coding for
Release 2 (R2) has been completed also. R2 adds support for parallel disks, migration and
caching between levels of the hierarchy and other functionality. R2 will be a complete
stand-alone system and is targeted for third quarter 1995.

We demonstrated, HPSS at Supercomputing 1994 with R1 and early R2 capabilities of
parallel disks, and tape access (Ampex D2, IBM NTP and 3490), to an IBM SP2, IBM RS
6000, PsiTech framebuffer, and Sony high-resolution monitor over a NSC HIPPI switch.
HPSS R1 is on order 95K lines of executable source code and R2 is expected to add on
another 50K lines of executable source code.

Our experience indicates that the architectural choices of basing the system on the IEEE
Reference Model, use of an industry defacto standard infrastructure based on OSF DCE
and Transarc Encina, and use of other industry standards such as POSIX, C, Unix, ISO
managed object model for Storage System Management and standard communication
protocols is sound. This foundation plus the software engineering methodology employed,
we believe, positions HPSS for a long and useful life for both scientific and commercial
high performance environments.

Acknowledgments

We wish to acknowledge the many discussions and shared design, implementation, and
operation experiences with our colleagues in the National Storage Laboratory collaboration,
the IEEE Mass Storage Systems and Technology Technical Committee, the IEEE Storage
System Standards Working Group, and in the storage community. Specifically we wish to
acknowledge the people on the HPSS Technical Committee and Development Teams. At
the risk of leaving out a key colleague in this ever-growing collaboration, the authors wish
to acknowledge Dwight Barrus, Ling-Ling Chen, Ron Christman, Danny Cook, Lynn
Kluegel, Tyce McLarty, Christina Mercier, and Bart Parliman from LANL; Larry Berdahl,
Jim Daveler, Dave Fisher, Mark Gary, Steve Louis, Donna Mecozzi, Jim Minton, and
Norm Samuelson from LLNL; Marty Barnaby, Rena Haynes, Hilary Jones, Sue Kelly,
and Bill Rahe from SNL; Randy Burris, Dan Million, Daryl Steinert, Vicky White, and
John Wingenbach from ORNL; Donald Creig Humes, Juliet Pao, Travis Priest and Tim
Starrin from NASA LaRC; Andy Hanushevsky, Lenny Silver, and Andrew Wyatt from
Cornell; and Paul Chang, Jeff Deutsch, Kurt Everson, Rich Ruef, Tracy Tran, Terry Tyler,
and Benny Wilbanks from IBM U.S. Federal and its contractors.

18

This work was, in part, performed by the Lawrence Livermore National Laboratory, Los
Alamos National Laboratory, Oak Ridge National Laboratory, and Sandia National
Laboratories, under auspices of the U.S. Department of Energy Cooperative Research and
Development Agreements, by Cornell, Lewis Research Center and Langley Research
Center under auspices of the National Aeronautics and Space Agency and by IBM U.S.
Federal under Independent Research and Development and other internal funding.

References

1. Berdahl, L., ed., "Parallel Transport Protocol," draft proposal, available from
Lawrence Livermore National Laboratory, Dec. 1994.

2. Buck, A. L., and R. A. Coyne, Jr., “Dynamic Hierarchies and Optimization in
Distributed Storage System,” Digest of Papers, Eleventh IEEE Symposium on Mass
Storage Systems, Oct. 7-10, 1991, IEEE Computer Society Press, pp. 85-91.

3. Christensen, G. S., W. R. Franta, and W. A. Petersen, “Future Directions of High-
speed Networks for Distributed Storage Environments,” Digest of Papers, Eleventh
IEEE Symposium on Mass Storage Systems, Oct. 7-10, 1991, IEEE Computer
Society Press, pp. 145-148.

4. Collins, B., et al., “Los Alamos HPDS: High-Speed Data Transfer,” Proc. Twelfth
IEEE Symposium on Mass Storage Systems, Monterey, April 1993.

5. Coyne, R. A., H. Hulen, and R. W. Watson, "The High Performance Storage System,"
Proc. Supercomputing 93, Portland, IEEE Computer Society Press, Nov. 1993.

6. Coyne, R. A. and H. Hulen, “An Introduction to the Mass Storage System Reference
Model, Version 5,” Proc. Twelfth IEEE Symposium on Mass Storage Systems,
Monterey, April 1993.

7. Coyne, R. A., H. Hulen, and R. W. Watson, “Storage Systems for National
Information Assets,” Proc. Supercomputing 92, Minneapolis, Nov. 1992, pp. 626-
633.

8. Dietzen, Scott, Transarc Corporation, "Distributed Transaction Processing with Encina
and the OSF/DCE", Sept. 1992, 22 pages.

9. IEEE Storage System Standards Working Group (SSSWG) (Project 1244), "Reference
Model for Open Storage Systems Interconnection, Mass Storage Reference Model Version
5," Sept. 1994. Available from the IEEE SSSWG Technical Editor Richard Garrison,
Martin Marietta (215) 532-6746

10. "Information Technology - Open Systems Interconnection - Structure of Management
Information - Part 4: Guidelines for the Definition of Management Objects," ISO/IEC
10165-4, 1991.

19

11. Internet Standards. The official Internet standards are defined by RFC's (TCP
protocol suite). RFC 783; TCP standard defined. RFC 959; FTP protocol standard.
RFC 1068; FTP use in third-party transfers. RFC 1094; NFS standard defined. RFC
1057; RPC standard defined.

12. ISO/IEC DIS 10040 Information Processing Systems - Open Systems Interconnection
- Systems Management Overview, 1991.

13. Katz, R. H., “High Performance Network and Channel-Based Storage,” Proceedings
of the IEEE, Vol. 80, No. 8, pp. 1238-1262, August 1992.

14. Lampson, B. W., M. Paul, and H. J. Siegert (eds.), “Distributed Systems -
Architecture and Implementation,” Berlin and New York: Springer-Verlag, 1981.

15. Morris, J. H., et al., “Andrew: A Distributed Personal Computing Environment,”
Comm. of the ACM, Vol. 29, No. 3, March 1986.

16. Nelson, M., et al., “The National Center for Atmospheric Research Mass Storage
System,” Digest of Papers, Eighth IEEE Symposium on Mass Storage Systems, May
1987, pp. 12-20.

17. Open Software Foundation, Distributed Computing Environment Version 1.0
Documentation Set. Open Software Foundation, Cambridge, Mass. 1992.

18. OSF, File Systems in a Distributed Computing Environment, White Paper, Open
Software Foundation, Cambridge, MA, July 1991.

19. Sandberg, R., et al., “Design and Implementation of the SUN Network Filesystem,”
Proc. USENIX Summer Conf., June 1989, pp. 119-130.

20. Tolmie, D. E., “Local Area Gigabit Networking,” Digest of Papers, Eleventh IEEE
Symposium on Mass Storage Systems, Oct. 7-10, 1991, IEEE Computer Society
Press, pp. 11-16.

21. Watson, R. W., R. A. Coyne, "The National Storage Laboratory: Overview and
Status," Proc. Thirteenth IEEE Symposium on Mass Storage Systems, Annecy
France, June 12-15, 1994, pp. 39-43.

22. Witte, L. D., “Computer Networks and Distributed Systems,” IEEE Computer, Vol.
24, No. 9, Sept. 1991, pp. 67-77.

20

APPENDIX A

Application Programming Interfaces (APIs) to HPSS Components

HPSS provides an application client library containing file, directory, and client state
operations.

The HPSS Client Library provides the following routines grouped by related
functionality.
API Clients Description
hpss_Open client Optionally create and open an HPSS file
hpss_Close client Close a file
hpss_Umask client Set the file creation mask
hpss_Read client Read a contiguous section of an HPSS

file, beginning at the current file offset
into a client buffer

hpss_Write client Write data from a client buffer to a
contiguous section of an HPSS file,
beginning at the current file offset

hpss_Lseek client Reposition the read/write file offset
hpss_ReadList client Read data from an HPSS file, specifying

lists for data sources and sinks
hpss_WriteList client Write data to an HPSS file, specifying

lists for data sources and sinks
hpss_Stat client Get file status
hpss_Fstat client Get file status
hpss_Lstat client Get file status, returning status about a

symbolic link if the named file is a
symbolic link

hpss_FileGetAttributes client Get attributes for a file
hpss_FileSetAttributes client Alter file attribute values
hpss_Access client Check file accessibility
hpss_Chmod client Change the file mode of an HPSS file
hpss_Chown client Change owner and group of an HPSS file
hpss_Utime client Set access and modification times of an

HPSS file
hpss_GetACL client Query the Access Control List of a file
hpss_DeleteACLEntry client Remove an entry from the Access Control

List of a file
hpss_UpdateACLEntry client Update an entry in the Access Control List

of a file
hpss_Truncate client Set the length of a file
hpss_Ftruncate client Set the length of a file

21

hpss_Fclear client Clear part of a file
hpss_Cache client Cache a piece of a file to a specified level

in the storage hierarchy
hpss_Fcache client Cache a piece of a file to a specified level

in the storage hierarchy
hpss_Purge client Purge a piece of a file from a specified

level in the storage hierarchy
hpss_Fpurge client Purge a piece of a file from a specified

level in the storage hierarchy
hpss_Migrate client Migrate a piece of a file from a specified

level in the storage hierarchy
hpss_Fmigrate client Migrate a piece of a file from a specified

level in the storage hierarchy
hpss_Link client Create a hard link to an existing HPSS file
hpss_Unlink client Remove an entry from an HPSS directory
hpss_Rename client Rename a file or directory
hpss_Symlink client Create a symbolic link
hpss_Readlink client Read the contents of a symbolic link (i.e.,

the data stored in the symbolic link)
hpss_Mkdir client Create a directory
hpss_Rmdir client Remove an HPSS directory
hpss_Opendir client Open an HPSS directory
hpss_Readdir client Read a directory entry
hpss_Rewinddir client Reset position of an open directory stream
hpss_Closedir client Close an open directory stream
hpss_Chdir client Change current working directory
hpss_Getcwd client Get current working directory
hpss_Chroot client Change the root directory for the current

client
hpss_LoadThreadState client Updates the user credentials and

file/directory creation mask for a thread's
API state

hpss_ThreadCleanup client Cleans up a thread's Client API state
hpss_Statfs client Returns information about the HPSS file

system
hpss_AccessHandle client Determines client accessibility to a file,

given a Name Server object handle and
file pathname

hpss_OpenBitfile client Opens and HPSS file, specified by bitfile
ID

hpss_OpenHandle client Open an HPSS file, specified by Name
Server object ID and, optionally,
pathname

22

hpss_GetAttrHandle client Get attributes of an HPSS file, specified
by Name Server object ID and,
optionally, pathname

hpss_SetAttrHandle client Set attributes of an HPSS file, specified
by Name Server object ID and,
optionally, pathname

hpss_GetACLHandle client Query the Access Control List of a file
hpss_DeleteACLEntry-Handle client Remove an entry from the Access Control

List of a file
hpss_UpdateACLEntry-Handle client Update an entry in the Access Control List

of a file
hpss_LinkHandle client Create a hard link to an existing HPSS

file, given the name space object handle of
the existing object, and relative directory
for the new link and the pathname of the
new link

hpss_LookupHandle client Query the Name Server to obtain
attributes, an access ticket and object
handle for a specified name space entry

hpss_MkdirHandle client Create a new directory
hpss_RmdirHandle client Remove a directory
hpss_ReaddirHandle client Read directory entries
hpss_UnlinkHandle client Remove directory entry
hpss_RenameHandle client Rename a directory entry
hpss_SymlinkHandle client Create a symbolic link
hpss_ReadlinkHandle client Read the contents of a symbolic link
hpss_TruncateHandle client Set the length of a file
hpss_StageHandle client Stage a piece of a file to a specified level

in the storage hierarchy
hpss_PurgeHandle client Purge a piece of a file from a specified

level in the storage hierarchy
hpss_MigrateHandle client Migrate a piece of a file from a specified

level in the storage hierarchy

23

The Name Server provides APIs for the following operations:
API Clients Description

ns_Insert client Insert a bitfile object into a directory
ns_Delete client Delete a name space object
ns_Rename client Rename a name space object
ns_MkLink client Create a hard link to file
ns_MkSymLink client Make a symbolic link
ns_ReadLink client Read data associated with a symbolic link
ns_GetName client Get path name for the specified bitfile
ns_GetACL client Get an ACL for the specified name server object
ns_SetACL client Set an ACL for the specified name server object
ns_DeleteACLEntry client Delete an entry from the ACL of the specified name

server object
ns_UpdateACLEntry client Update an entry from the ACL of the specified

name server object
ns_Mkdir client Create a directory
ns_ReadDir client Return a list of directory entries
ns_GetAttrs SSM, client Get Name Server handle and managed object

attributes
ns_SetAttrs SSM, client Set Name Server managed object attributes

The Bitfile Server provides APIs for the following operations:
API Client Description

bfs_Create client Create a bitfile
bfs_Unlink client Unlink a bitfile
bfs_Open client Open a bitfile
bfs_Close client Close a bitfile
bfs_Read client Read data from a bitfile
bfs_Write client Write data to a bitfile
bfs_BitfileGetAttrs SSM, client Get bitfile managed object attributes
bfs_BitfileSetAttrs SSM, client Set bitfile managed object attributes
bfs_BitfileOpenGetAttrs SSM, client Get bitfile managed object attributes (for an

open bitfile)
bfs_BitfileOpenSetAttrs SSM, client Set bitfile managed object attributes (for an

open bitfile)
bfs_ServerGetAttrs SSM, client Get (common) server managed object attributes
bfs_ServerSetAttrs SSM, client Set (common) server managed object attributes
bfs_Copy Migration, client Copy storage segments for a bitfile to the next

storage hierarchy level
bfs_Copy Migration, client Move storage segments for a bitfile to the next

storage hierarchy level
bfs_Purge Purge, client Reclaim space (i.e., purge segments) occupied

by a bitfile

24

The Storage Server provides APIs for the following operations:
API Clients Description
ss_BeginSession BFS, SSM, client Start a storage server session
ss_EndSession BFS, SSM, client End a storage server session
ss_SSCreate BFS, client Create a storage segment
ss_SSUnlink BFS, client Delete a storage segment
ss_SSRead BFS, client Read data from a storage segment
ss_SSWrite BFS, client Write data to a storage segment
ss_SSGetAttrs BFS, client Get storage segment managed object

attributes
ss_SSSetAttrs BFS, client Set storage segment managed object

attributes
ss_SSMount Migrate, Repack,

SSM, client
Mount a storage segment and assign it to a
session

ss_SSUnmount Migrate, Repack,
SSM, client

Unmount a storage segment

ss_SSCopySegment Migrate, SSM,
client

Copy storage segment to new segment on
different virtual volume

ss_SSMoveSegment Migrate, Repack,
SSM, client

Move storage segment to new virtual
volume

ss_MapCreate SSM, client Create storage map for a virtual volume
ss_MapDelete SSM, client Delete storage map for a virtual volume
ss_MapGetAttrs SSM, client Get storage map managed object attributes
ss_MapSetAttrs SSM, client Set storage map managed object attributes
ss_VVCreate SSM, client Create a virtual volume
ss_VVDelete SSM, client Delete a virtual volume
ss_VVMount SSM, client Mount a virtual volume
ss_VVUnmount SSM, client Unmount a virtual volume
ss_VVRead SSM, client Read a virtual volume
ss_VVWrite SSM, client Write a virtual volume
ss_VVGetAttrs SSM, client Get virtual volume managed object

attributes
ss_VVSetAttrs SSM, client Set virtual volume managed object

attributes
ss_PVCreate SSM, client Create a physical volume
ss_PVDelete SSM, client Delete a physical volume
ss_PVMount SSM, client Mount a physical volume
ss_PVUnmount SSM, client Unmount a physical volume
ss_PVRead SSM, client Read a physical volume
ss_PVWrite SSM, client Write a physical volume
ss_PVGetAttrs SSM, client Get physical volume managed object

attributes

25

ss_PVSetAttrs SSM, client Set physical volume managed object
attributes

ss_SSrvGetAttrs SSM, client Get Storage Server specific managed object
attributes

ss_SSrvSetAttrs SSM, client Set Storage Server specific managed object
attributes

ss_ServerGetAttrs SSM, client Get (common) server managed object
attributes

ss_ServerSetAttrs SSM, client Set (common) server managed object
attributes

The Mover provides APIs for the following operations:
API Clients Description
mvr_Read SS, PVL, client Read data from a device or devices
mvr_Write SS, PVL, client Write data to a device or devices
mvr_DeviceSpec SS, client Load a physical volume

Unload a physical volume
Load message to device's display area
Flush data to media
Write tape mark
Read media label
Write media label
Clear portion of disk

mvr_DeviceGetAttrs SS, SSM, client Get Mover device managed object
attributes

mvr_DeviceSetAttrs SS, SSM, client Set Mover device managed object attributes
mvr_MvrGetAttrs SSM, client Get Mover specific managed object

attributes
mvr_MvrSetAttrs SSM, client Set Mover specific managed object

attributes
mvr_ServerGetAttrs SSM, client Get (common) server managed object

attributes
mvr_ServerSetAttrs SSM, client Set (common) server managed object

attributes

26

The Physical Volume Library provides APIs for the following operations:
API Clients Description
pvl_Mount client Synchronously mount a single volume
pvl_MountNew SS, client Begin creating a set of volumes to

automatically mount
pvl_MountAdd SS, client Add a volume to the set of volumes to be

mounted
pvl_MountCommit SS, client Mount a set of volumes
pvl_MountCompleted PVR Notify the PVL a pending mount has

completed
pvl_CancelAllJobs SS, SSM, client Cancel all jobs associated with a

connection handle
pvl_DismountJobId SS, SSM, client Dismount all volumes associated with a

specific job
pvl_DismountVolume SS, SSM, client Dismounts a single volume
pvl_DismountDrive SSM, client Forces the dismount of a specified drive
pvl_Import SSM, client Imports a new cartridge into HPSS
pvl_Export SSM, client Exports a cartridge from HPSS
pvl_Move SSM, client Move a cartridge from one PVR to another
pvl_NotifyCartridge PVR Notify the PVL that a cartridge has been

check in or out of a PVR
pvl_WriteVolumeLabel SS, SSM, client Rewrite the internal label of a specified

volume
pvl_AllocateVol SS, SSM, client Allocate a volume to a particular client
pvl_ScratchVol SS, SSM, client Return a volume to the scratch pool
pvl_DriveGetAttrs SSM, client Get drive managed object attributes
pvl_DriveSetAttrs SSM, client Set drive managed object attributes
pvl_VolumeGetAttrs SSM, client Get volume managed object attributes
pvl_VolumeSetAttrs SSM, client Set volume managed object attributes
pvl_QueueGetAttrs SSM, client Get PVL request queue managed object

attributes
pvl_QueueSetAttrs SSM, client Set PVL request queue managed object

attributes
pvl_RequestGetAttrs SSM, client Get PVL request queue entry managed

object attributes
pvl_RequestSetAttrs SSM, client Set PVL request queue entry managed

object attributes
pvl_PVLGetAttrs SSM, client Get PVL specific managed object attributes
pvl_PVLSetAttrs SSM, client Set PVL specific managed object attributes
pvl_ServerGetAttrs SSM, client Get (common) server managed object

attributes
pvl_ServerSetAttrs SSM, client Set (common) server managed object

attributes

27

The Physical Volume Repository provides APIs for the following operations:
API Clients Description
pvr_Mount PVL, client Asynchronously mount a single volume
pvr_MountComplete PVL, client Notify PVL a requested mount has

completed
pvr_DismountCart PVL, client Dismount a single cartridge
pvr_DismountDrive PVL, client Dismount the cartridge in a given drive
pvr_Inject PVL, SSM,

client
Accept a new cartridge into the PVR

pvr_Eject PVL, SSM,
client

Eject a cartridge from the PVR

pvr_Audit SSM, client Audit all or part of a repository checking
external cartridge labels when possible

pvr_LocateCartridge PVL, client Verify whether or not a PVR manages a
cartridge

pvr_SetDrive PVL, client Takes drives in the PVR on-line or off-line
pvr_CartridgeGetAttrs SSM, client Get a cartridge managed object attributes
pvr_CartridgeSetAttrs SSM, client Set a cartridge managed object attributes
pvr_PVRGetAttrs SSM, client Get PVR specific managed object attributes
pvr_PVRSetAttrs SSM, client Set PVR specific managed object attributes
pvr_ServerGetAttrs SSM, client Get (common) server managed object

attributes
pvr_ServerSetAttrs SSM, client Set (common) server managed object

attributes
pvr_ListPendingMounts SSM, client List all currently pending mounts for the

PVR

The Storage System Manager provides APIs for the following operations:
API Clients Description
ssm_Adm client Perform administrative request on one or more

servers (shut down, halt, mark down,
reinitialize, start)

ssm_AttrGet client Get managed object attributes
ssm_AttrReg client Register an SSM client to receive notifications of

data change in managed objects
ssm_AttrSet client Set managed object attributes
ssm_Checkin client Accept checkins from data server clients
ssm_Checkout client Accept checkouts from data server clients
ssm_ConfigAdd client Add a new entry to a configuration files
ssm_ConfigDelete client Delete an entry from a configuration file
ssm_ConfigUpdate client Update a configuration file entry
ssm_Delog client Allow accept to the delog command

28

ssm_DriveDismount client Dismount a drive
ssm_JobCancel client Cancel a Physical Volume Library job
ssm_CartImport client Import cartridges into the Physical Volume

Library
ssm_CartExport client Export cartridges from the Physical Volume

Library
ssm_ResourceCreate client Create resources (physical volume, virtual

volume, and storage map) in the Storage Server
ssm_ResourceDelete client Delete resources (physical volume, virtual

volume, and storage map) from the Storage
Server

ssm_AlarmNotify Logging Receive notifications of alarms
ssm_EventNotify Logging Receive notifications of events
ssm_MountNotify PVL Receive notifications of tape mounts and

dismounts
ssm_BitfileNotify BFS Receive bitfile data change notifications
ssm_CartNotify PVR Receive cartridge data change notifications
ssm_DeviceNotify PVL Receive device data change notifications
ssm_DriveNotify PVL Receive drive data change notifications
ssm_LogfileNotify Logging Receive log file data change notifications
ssm_MVRNotify Mvr Receive Mover specific data change notifications
ssm_MapNotify SS Receive storage map data change notifications
ssm_NSNotify NS Receive Name Server specific data change

notifications
ssm_PVNotify SS Receive physical volume data change

notifications
ssm_PVRNotify PVR Receive PVR specific data change notifications
ssm_QueueNotify PVL Receive PVL queue data change notifications
ssm_RequestNotify PVL Receive PVL request entry data change

notifications
ssm_SFSNotify Metadata

Manager
Receive SFS data change notifications

ssm_SSNotify SS Receive storage segment data change
notifications

ssm_ServerNotify NS, BFS, SS,
Mvr, PVL,

PVR, Logging

Receive common server data change notifications

ssm_SsrvNotify SS Receive Storage Server specific data change
notifications

ssm_VVNotify SS Receive virtual volume data change notifications
ssm_VolNotify PVL Receive volume data change notifications
ssm_Migrate client Move storage segments for a bitfile to the next

storage hierarchy level
ssm_Purge client Reclaim space occupied by bitfiles

29

ssm_Repack client Perform defragmentation of physical volumes
ssm_MoveCart client Move a cartridge from one PVR to another
client_notify client Notify clients of alarms, events, mount requests,

managed object data changes, and special
System Manager requests

The following managed objects have attributes which may be queried (and set) by
SSM:
Name Server Volume
Bitfiles Physical Volume Library queue
Bitfile Server (common) Physical Volume Library request entry
Storage segments Physical Volume Library server specific
Storage maps Physical Volume Library Server (common)
Virtual volumes Cartridge
Physical volumes Physical Volume Repository server specific
Storage Server specific Physical Volume Repository Server (common)
Storage Server (common) Security server
Mover device Log Daemon server (common)
Mover server specific Log Client server (common)
Mover server (common) Structured File Server
Drive

The Storage System Manager also receives the following type of notifications from
the HPSS server components:
Alarms Tape mounts
Events Data changes for registered object attributes

Some of the more important management operations which may be performed by
the Storage System Manager include:
Import/create resources Repack
Import cartridges Delog
Export cartridges Set devices online/offline
Move cartridges
(from one PVR to another)

Dismount drive

Audit PVR Start/stop/reinitialize/halt servers
Migrate Configure servers
Purge Define/modify ACLs

30

Migration/Purge provides APIs for the following operations:
API Clients Description
migr_StartMigration SSM, client Start migration for a particular storage class
migr_StartPurge SSM, client Start purge for a particular storage class
migr_MPSGetAttrs SSM, client Get the migration-purge server attributes
migr_MPSSetAttrs SSM, client Set the migration-purge server attributes
migr_ServerGetAttrs SSM, client Get (common) server managed object attributes
migr_ServerSetAttrs SSM, client Set (common) server managed object attributes

T
echnical Inform

ation D
epartm

ent • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia 94551

